QnrS1 structure-activity relationships.

نویسندگان

  • María M Tavío
  • George A Jacoby
  • David C Hooper
چکیده

OBJECTIVES Loop B is important for low-level quinolone resistance conferred by Qnr proteins. The role of individual amino acids within QnrS1 loop B in quinolone resistance and gyrase protection was assessed. METHODS qnrS1 and 11 qnrS1 alleles with site-directed Ala mutations in loop B were expressed in Escherichia coli BL21(DE3) and proteins were purified by affinity chromatography. Ciprofloxacin MICs were determined with and without IPTG. Gyrase DNA supercoiling was measured with and without ciprofloxacin IC50 and with various concentrations of QnrS1 proteins. RESULTS Wild-type QnrS1 and QnrS1 with Asn-110→Ala and Arg-111→Ala substitutions increased the ciprofloxacin MIC 12-fold in BL21(DE3), although QnrS1 with Gln-107→Ala replacement increased it 2-fold more than wild-type did. However, QnrS1 with Ala substitutions at His-106, Val-108, Ser-109, Met-112, Tyr-113, Phe-114, Cys-115 and Ser-116 increased ciprofloxacin MIC 1.4- to 8-fold less than wild-type QnrS1. Induction by 10-1000 μM IPTG increased ciprofloxacin MICs for all mutants, reaching values similar to those for wild-type. Purified wild-type and mutated proteins differed in protection of gyrase from ciprofloxacin action. Wild-type QnrS1 produced complete protection of gyrase supercoiling from ciprofloxacin (1.8 μM) action at 0.05 nM and half protection at 0.5 pM, whereas QnrS1 with Ala replacements that conferred the least increase in ciprofloxacin MICs also required the highest QnrS1 concentrations for protection. CONCLUSIONS Key individual residues in QnrS1 loop B affect ciprofloxacin resistance and gyrase protection from ciprofloxacin action, supporting the concept that loop B is key for interaction with gyrase necessary for quinolone resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic characterization of three qnrS1-harbouring multidrug-resistance plasmids and qnrS1-containing transposons circulating in Ho Chi Minh City, Vietnam

Plasmid-mediated quinolone resistance (PMQR) refers to a family of closely related genes that confer decreased susceptibility to fluoroquinolones. PMQR genes are generally associated with integrons and/or plasmids that carry additional antimicrobial resistance genes active against a range of antimicrobials. In Ho Chi Minh City (HCMC), Vietnam, we have previously shown a high frequency of PMQR g...

متن کامل

Activity of iclaprim against Legionella pneumophila.

larities. A comparison between the TPqnrS-1a-associated QnrS1 protein and the 218-amino-acid proteins from Vibrio splendidus (accession no. EAP95542) and Vibrio spp. (accession no. EAQ55748)—the latter two considered as a natural reservoir of qnrS genes—revealed 83% and 82% amino acid identity, respectively, and 91% amino acid similarity. Previous studies revealed that the qnrS1 gene is often l...

متن کامل

Dissemination of the Transmissible Quinolone-Resistance Gene qnrS1 by IncX Plasmids in Nigeria

The plasmid-encoded quinolone resistance gene qnrS1 was recently found to be commonly associated with ciprofloxacin resistance in Nigeria. We mapped the qnrS1 gene from an Escherichia coli isolate obtained in Nigeria to a 43.5 Kb IncX2 plasmid. The plasmid, pEBG1, was sufficient to confer ciprofloxacin non-susceptibility, as well as tetracycline and trimethoprim resistance, on E. coli K-12. Del...

متن کامل

Differential phenotypic and genotypic characteristics of qnrS1-harboring plasmids carried by hospital and community commensal enterobacteria.

The qnrS1 gene induces reduced susceptibility to fluoroquinolones in enterobacteria. We investigated the structure, antimicrobial susceptibility phenotype, and antimicrobial resistance gene characteristics of qnrS1 plasmids from hospitalized patients and community controls in southern Vietnam. We found that the antimicrobial susceptibilities, resistance gene characteristics, and plasmid structu...

متن کامل

A QUANTUM CHEMICAL STUDY OF STRUCTURE -ACTIVITY RELATIONSHIPS OF DIHYDROPYRIDINE CALCIUM ANTAGONISTS

Quantum chemical (MNDo)caleulations have beenused toelucidate the molecular properties and structure - activity relationships of dihydropyridine (DHP) type calcium antagonists. There is a good corielation between the net atomic charges on various atoms of the 4 - phenyl ring of dihydropyridines and pharmacological activity. .Also, activity decreases with increasing free rotation of the phen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of antimicrobial chemotherapy

دوره 69 8  شماره 

صفحات  -

تاریخ انتشار 2014